Improved MFCC Feature Extraction Combining Symmetric ICA Algorithm for Robust Speech Recognition
نویسندگان
چکیده
Independent component analysis (ICA), instead of the traditional discrete cosine transform (DCT), is often used to project log Mel spectrum in robust speech feature extraction. The paper proposed using symmetric orthogonalization in ICA for projecting log Mel spectrum into a new feature space as a substitute in extracting speech features to solve the problem of cumulative error and unequal weights that deflation orthogonalization brings, so as to improve the robustness of speech recognition systems, and increase the efficiency of estimation at the same time. Furthermore, the paper studied the nonlinearities of the objective function in ICA and their coefficients, tested them in all kinds of environments, finding that they influenced the recognition rate greatly in speech recognition systems, and applied a new coefficient in the proposed method. Experiments based on HMM and Aurora-2 speech corpus suggested that the new method was superior to deflationbased ICA and MFCC.
منابع مشابه
Improving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملCombining Mllr Adaptation and Feature Extraction for Robust Speech Recognition in Reverberant Environments
This paper presents an investigation on speech recognition performance in reverberant environments. Reverberant noise has been a major concern in speech recognition systems. Many speech recognition systems, even with state-of-art features, fail to respond to reverberant effects and the recognition rate deteriorates. This shows the limitations of robust feature extraction in reverberant environm...
متن کاملSpectral Analysis of Speech: A New Technique
ICA which is generally used for blind source separation problem has been tested for feature extraction in Speech recognition system to replace the phoneme based approach of MFCC. Applying the Cepstral coefficients generated to ICA as preprocessing has developed a new signal processing approach. This gives much better results against MFCC and ICA separately, both for word and speaker recognition...
متن کاملPhoneme recognition using ICA-based feature extraction and transformation
We investigate the use of independent component analysis (ICA) for speech feature extraction in speech recognition systems. Although initial research suggested that learning basis functions by ICA for encoding the speech signal in an e5cient manner improved recognition accuracy, we observe that this may be true for a recognition tasks with little training data. However, when compared in a large...
متن کاملRobust Speech Feature Extraction Using the Hilbert Transform Spectrum Estimation Method
The performance of traditional mel-frequency cepstral coefficients (MFCC) speech feature extraction method decreases drastically in the complex noisy environment. To improve the performance and robustness of speech recognition system, which is based on spectral envelope estimation method, the minimum distortionless response spectrum MVDR-MFCC (Minimum Variance Distortionless Response-MFCC) feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Multimedia
دوره 7 شماره
صفحات -
تاریخ انتشار 2012